Synthesis and Structure of [1]Borametallocenophanes of Titanium, Zirconium, and Hafnium

Holger Braunschweig,*[a] Carsten von Koblinski,^[a] Maliya Mamuti,^[a] Ulli Englert,^[a] and Ruimin Wang^[a]

Keywords: Boron / Titanium / Zirconium / Hafnium / Metallocenophanes / Metallocenophanes

Various [1]borametallocenophane complexes of all the group IV metals were obtained in high yield by a very efficient multistep, one-pot synthesis. By this method not only the biscyclopentadienyl and diindenyl complexes [$\{R_2NB(\eta^5-C_5H_4)_2\}MCl_2$] (M = Zr, R = Me, SiMe₃, **4a**, **b**; M = Hf, R = SiMe₃, **5**) and [$\{(Me_3Si_2)NB(\eta^5-C_9H_6)_2\}MCl_2\}$ (M = Ti, **6**; M = Zr, **7**) were obtained, but also complexes with two different

 $\eta^5\text{-coordinated}$ ligands such as $[\{iPr_2NB(\eta^5\text{-}C_5H_4)(\eta^5\text{-}C_9H_6)\}MCl_2]$ (M = Zr, 8; M = Hf, 9). Some of compounds <math display="inline">4-9 were chosen to investigate their catalytic properties with respect to Ziegler-Natta-type polymerisation of olefins, and proved to be highly efficient for the preparation of polyethylene.

Introduction

In the course of our investigations on both strained^[1a,1b] and unstrained^[2a,2b] [1]borametallocenophanes, we recently reported the first [1]boratitanocenophanes, which were obtained in high yields from a convenient one-pot synthesis. Metallocenophanes of group IV elements are of special interest due to their remarkable qualities as highly active Ziegler-Natta-type catalysts for olefin polymerisation.^[3] Such catalytic processes could be accelerated by a bridging Lewis acidic centre such as boron.^[4] Structurally authenticated boron-bridged metallocenophanes of group IV metals are restricted to a very few examples, including $[\{(Me_2S)PhB(\eta^5-C_5H_4)_2\}ZrCl_2]$ (1) which has a four-coordinate boron atom in the bridge. [5] During the preparation of this paper, further zirconium complexes with three- and four-coordinate boron atoms $[\{iPr_2NB(\eta^5-C_5H_4)_2\}ZrCl_2]$ $[\{iPr_2NB(\eta^5-C_9H_6)_2\}ZrCl_2]$ (2b), $[\{(L)PhB(\eta^5 C_9H_6$ ₂ $ZrCl_2$ (L = PMe₃, thf, OEt₂; **2c**), obtained by an analogous method to that described for the synthesis of $[\{(Me_3Si)_2NB(\eta^5-C_5H_4)_2\}TiCl_2],^{[2a,2b]}$ were reported by Ashe and Reetz.[6a,6b]

In the present paper we report on the synthesis, structure and catalytic properties of several [1]borametallocenophanes of Ti, Zr, and Hf, which were obtained by convenient reactions in high yields.

Results and Discussion

Synthesis and Structure of (Me₃Si)₂NB(C₉H₇)₂ (3a, b)

As already reported for $(Me_3Si)_2NB(C_5H_5)_2^{[2a]}$ the corresponding diindenylborane $(Me_3Si)_2NB(C_9H_7)_2$ (3a) is obtained in almost quantitative yields as a colourless solid

from the reaction of $(Me_3Si)_2NBCl_2$ with $Li[C_9H_7]$ according to Equation 1.

The 1-indenyl isomer 3a, in which boron is bound to a saturated carbon atom and thus adopts an allylic position, represents the kinetically controlled product of this reaction. A quantitative rearrangement yielding the thermodynamically more stable vinylic isomer 3b is achieved by either heating 3a for 2 h to 60°C in benzene or by treating 3a with catalytic amounts of NEt₃ in benzene at room temperature (Equation 2). The spectroscopic data of 3a, b, such as the distinct low-field shift in the ¹¹B NMR spectrum for the allylic isomer with respect to the vinylic isomer $\delta = 1$ 57.6 (3a) and 50.6 (3b), resemble those of corresponding diindenyl(organyl)boranes, [6b] diorganyl(indenyl)boranes^[7a,b] and 1,2-diindenyldiboranes(4),^[8] which were reported very recently to undergo the same type of rearrangement. Compound 3a, with two stereocentres, is expected to form a mixture of a C_2 -symmetrical rac and a C_8 -symmetrical meso isomer. The presence of both isomers is evident from the double set of signals in the ¹³C NMR spectra.

Single crystals of **3b** suitable for an X-ray structure analysis were obtained from hexane at $-30\,^{\circ}$ C. The compound crystallises in the monoclinic space group C2/c and the molecule adopts almost C_2 symmetry in the solid state (Figure 1). Both the boron and nitrogen atoms are in a trigonal-planar environment, and due to the steric demand of the bulky Me₃Si groups, the Si1-N-Si2 plane is twisted with respect to the C11-B-C21 plane. The corresponding torsion angles are -51.28° (Si1-N-B-C21) and -50.73° (Si2-N-B-C11). Hence, together with an extended B-N

[[]a] Institut für Anorganische Chemie der Technischen Hochschule, Templergraben 55, D-52056 Aachen, Germany E-mail: holger.braunschweig@ac.rwth-aachen.de

bond length of 144.3(5) pm a less effective backbonding from nitrogen to boron can be assumed. Both B–C and C–C bond lengths are in the expected range and resemble the data known for the corresponding 1,2-diindenyldiborane(4) derivative.^[8]

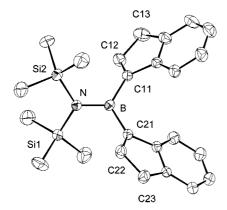


Figure 1. Structure of **3b** in the crystal (ellipsoids at 30% probability); selected distances (pm) and angles (°): B-N 144.3(5), B-C11 157.5(5), C11-C12 133.8(6), C12-C13 150.3(5); Si1-N-B 118.3(3); N-B-C11 120.1(4), C11-B-C21 118.9(3)

Synthesis and Structure of the [1]Borametallocenophanes

In analogy to the synthesis of $[\{(SiMe_3)_2NB(\eta^5-C_5H_4)_2\}TiCl_2]^{[2a,2b]}$ the [1]borametallocenophanes $[\{R_2NB-(\eta^5-C_5H_4)_2\}MCl_2]$ (M = Zr, R = Me, SiMe₃, 4a, b; M = Hf, R = SiMe₃, 5) were obtained in three-step, one-pot syntheses according to Equation 3. [2b] In the case of 4a the dibromoborane Me₂NBBr₂ served as starting material, whereas 4b and 5 were obtained from the dichloro derivative (Me₃Si)₂NBCl₂. Although being sterically rather demanding, the latter aminodihaloborane is known to undergo substitutions of both chloride ligands more easily than the much smaller Me₂NBCl₂. [9a,9b] This is due to the

electron-withdrawing effect of the silyl ligands, which enhances the electrophilicity of the boron centre. All products were isolated as yellow crystalline solids in high yields (4a, 91%; 4b, 96%; 5, 85%). These zirconium and hafnium complexes are readily soluble in CH_2Cl_2 and proved to be more stable towards decomposition in solution than the corresponding titanium derivative [{(SiMe₃)₂NB(η^5 -C₅H₄)₂}-TiCl₂]. [^{2a]}

The structure of **4a**, **b** and **5** in solution was derived from multinuclear NMR spectra, showing the expected two pseudo triplets in the 1 H NMR spectra for the AA'BB' spin system of the cyclopentadienyl protons at $\delta = 5.28$, 6.62 (**4a**), 5.16, 6.61 (**4b**), and 5.54, 6.68 (**5**). The resonances in the 11 B NMR spectrum of **4b** and **5** at about $\delta = 47$ resemble the signal of the uncoordinated ligand[2a] and show the expected low-field shift with respect to the signal of the dimethylamino derivative **4a** at $\delta = 38.7$.

Suitable single crystals of **4a** were obtained by recrystal-lisation from a 70:30 mixture of CH_2Cl_2 and Et_2O at $-30\,^{\circ}C$. The compound crystallises in the space group $P2_1/n$, and the molecule exhibits a slight deviation from the C_{2v} symmetry, which was assumed from its structure in solution (Figure 2). The B-N distance was found to be 138.4(4) pm, thus indicating a B-N double bond. As expected the two cyclopentadienyl ligands adopt an eclipsed orientation, and the geometry of **4a** is very similar to that of $[\{(SiMe_3)_2NB(\eta^5-C_5H_4)_2\}TiCl_2],^{[2a]}$ and to the corresponding zirconium complex $[\{iPr_2NB(\eta^5-C_5H_4)_2\}ZrCl_2]$ (**2a**), the structure of which was described very recently. [6a]

The boron-bridged diindenyl complexes $[\{(Me_3Si_2)-NB(\eta^5-C_9H_6)_2\}MCl_2]$ (M=Ti, 6; M=Zr, 7) were obtained according to the procedures described in Equations 4a and 4b. $(Me_3Si_2)NBCl_2$ was treated with two equivalents of $Li[C_9H_7]$ in hexane, LiCl was removed by filtration, and after addition of Et_2O , the filtrate was treated with two equivalents of BuLi. The obtained slurry was subsequently reacted with $[TiCl_3(thf)_3]$ or $[ZrCl_4(thf)_2]$ at low tempera-

4a, b; M = Zr, R = Me, X = Br; R = Me₃Si, X = Cl **5**; M = Hf, R = Me₃Si, X = Cl

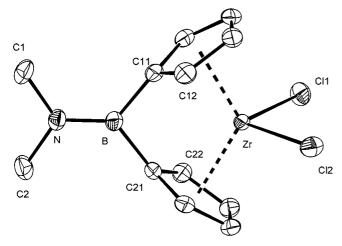


Figure 2. Structure of **4a** in the crystal (ellipsoids at 30% probability); selected distances (pm) and angles (°): Zr-Cl1 242.92(8), Zr-Cl2 245.79(9), B-N 138.4(4); Cl1-Zr-Cl2 100.87(3), Cl1-B-C21 105.9(3), Cl1-B-N 127.5(3), C21-B-N 126.5(3)

tures. In the case of the titanium complex **6** the intermediate Ti^{III} species was oxidised with $PbCl_2$. [10] The two complexes were isolated as dark red or orange crystalline materials, respectively, in yields of 71% (**6**) and 82% (**7**) and their constitutions in solution deduced from multinuclear NMR spectra. Although the general formation of a mixture of both rac (C_2 symmetry) and meso (C_8 symmetry) isomers was reported for related element-bridged diindenyl complexes, $^{[6a,6b,11]}$ single sets of signals in the 13 C NMR spectra of **6** and **7** reveal the presence of only one isomer in our case. After reaction of **7** with two equivalents of LiMe, the corresponding complex $[\{(Me_3Si_2)NB(\eta^5-C_9H_6)_2\}ZrMe_2]$ was obtained, $^{[12]}$ and a single resonance for both metal-coordinated methyl groups in the NMR spectra indicates the presence of the rac isomer. This is further demonstrated by

the formation of predominantly isotactic polypropylene (M.p. 116°C, triad ratio mm/mr/rr = 86:7:7 determined by ¹³C NMR spectroscopy^[13]) from **7** as a catalyst for the polymerisation of propene.

The preparation of [1]borametallocenophanes by the present method can be extended to the corresponding boronbridged complexes with two different η⁵-coordinated ligands, which have not previously been reported. This is demonstrated by the synthesis of $[\{iPr_2NB(\eta^5-C_5H_4)(\eta^5-\eta^5-\eta^5-H_4)(\eta^5-\eta^5-H_5)(\eta^5-\eta^5-H_5)(\eta^5-\eta^5-H_5)(\eta^5-\eta^5-H$ C_9H_6 MCl_2 M = Zr, **8**; M = Hf, **9**) according to Equation 5. Stepwise treatment of iPr₂NBCl₂ with Na[C₅H₅] and Li[C₉H₇], subsequent reaction with two equivalents of BuLi, and addition of $[MCl_4(thf)_n]$ (M = Zr, n = 2; M =Hf, n = 0) afforded the mixed [1]borametallocenophanes 8, 9 in 82% and 74% yield, respectively, as orange, crystalline solids. The spectroscopic data of both compounds, such as the ¹¹B NMR signals at about $\delta = 40$, together with the expected patterns for η^5 -cyclopentadienyl and η^5 -indenyl ligands in the ¹H and ¹³C NMR spectra prove their constitution in solution. A restricted rotation with respect to the boron-nitrogen double bond is indicated by double sets of signals for the isopropyl groups in both the ¹H and ¹³C NMR spectra.

Conclusion

The synthetic method described in this paper and previously reported for $[\{(Me_3Si)_2NB(\eta^5-C_5H_4)_2\}TiCl_2]$ provides a convenient and general route to group IV [1]borametallocenophanes showing either η^5 -cyclopentadienyl or η^5 -indenyl ligands such as $[\{R_2NB(\eta^5-C_5H_4)_2\}MCl_2]$ (M=Zr, R=Me, $SiMe_3$, **4a**, **b**; M=Hf, $R=SiMe_3$, **5**) and $[\{(Me_3Si_2)NB(\eta^5-C_9H_6)_2\}MCl_2]$ (M=Ti, **6**; M=Zr, **7**). The novel complexes $[\{iPr_2NB(\eta^5-C_5H_4)(\eta^5-C_9H_6)\}MCl_2]$

$$\begin{array}{c} \text{Me}_{3}\text{Si} \\ \text{N} = \text{B} \\ & \begin{array}{c} \text{CI} \\ & 2) \text{ 2 Li}[\text{C}_{9}\text{H}_{7}] \\ & 2) \text{ 2 LiBu} \\ & 3) \text{ [TiCl}_{3}(\text{thf})_{3}] \\ & 4) \text{ 0.5 PbCl}_{2} \end{array} \qquad \begin{array}{c} \text{Me}_{3}\text{Si} \\ & \text{Me}_{3}\text{Si} \\ & \\ \text{Me}_{3}\text{Si} \\ & \\ \text{N} = \text{B} \\ & \\ \text{N} = \text{B} \\ & \\ \text{CI} \end{array} \qquad \begin{array}{c} \text{CI} \\ & 1) \text{ 2 Li}[\text{C}_{9}\text{H}_{7}] \\ & 2) \text{ 2 LiBu} \\ & \\ \text{Me}_{3}\text{Si} \\ & \\$$

(M = Zr, **8**; M = Hf, **9**) showing two different η^5 -coordinated ligands are obtained in a similar manner. Further studies will focus on the catalytic properties of these [1]Borametallocenophanes. Preliminary investigations have already shown them to be highly efficient catalysts for the Ziegler-Natta-type polymerisation of olefins, showing, for example, activities of 5258 kg PE·mol[catalyst]⁻¹h⁻¹ (**6**) and 8905 kg PE·mol[catalyst]⁻¹h⁻¹ (**4a**)

Experimental Section

All manipulations were carried out under a dry nitrogen atmosphere with common Schlenk techniques. Solvents and reagents were dried by standard procedures, distilled, and stored under nitrogen over molecular sieves. (Me₃Si)₂NBCl₂,^[14] *i*Pr₂NBCl₂,^[15] Na[C₅H₅],^[16] [ZrCl₄(thf)₂],^[17] [TiCl₃(thf)₃]^[17] and Me₂NBBr₂^[18] were obtained according to literature procedures. NMR: Varian Unity 500 at 499.843 MHz (¹H, internal standard TMS), 150.364 MHz (¹¹B, BF3·OEt2 in C₆D₆ as external standard, 125.639 MHz (¹³C{¹H}, APT, internal standard TMS); all NMR spectra were recorded in CD₂Cl₂ as solvent unless otherwise stated. Mass spectra were recorded on a Finnigan MAT 95 (70 eV) and elemental analyses (C, H, N) were obtained from a Carlo–Erba elemental analyzer, model 1106.

 $(Me_3Si)_2NB(1-C_9H_7)_2$ (3a): Li[C₉H₇] (7.38 g, 60.41 mmol) was suspended in 100 mL hexane, and a solution of (Me₃Si)₂NBCl₂ (7.31 g, 30.20 mmol) in 20 mL hexane was added at 0°C. The yellow suspension was allowed to warm to ambient temperature and stirred for 2 h. All volatiles were removed in high vacuum, and the remaining solid was extracted with 50 mL of hexane. After filtration 3a was obtained as a white crystalline solid by cooling to -30° C (11.64 g, 96%). - ¹H NMR (C₆D₆): $\delta = 0.24$ (s, 18 H, SiMe₃), 3.61 (m, 2 H, B-CH_{ind}), 6.06-7.43 (m, 12 H, CH_{ind}) -¹¹B NMR: δ = 57.6 (s). - ¹³C NMR: δ = 3.75 (isomer 1), 4.83 (isomer 2) (SiMe₃), 54.8 (br, B-C_{ind}), 120.8 (1), 121.0 (2), 123.6 (1), 123.9 (2), 124.8 (1), 125.4 (2), 125.9 (1), 126.4 (2), 131.3 (1), 131.9 (2), 135.0 (1), 136.3 (2) (CH_{ind}), 144.1 (1), 144.3 (2), 146.3 (1), 146.7 (2) (C_{ind}). – MS; m/z (%): 401 (90) [M^+], 386 (25) [M^+ - Me], 286 (40) $[M^+ - ind]$. - $C_{24}H_{32}BNSi_2$ (401.51): calcd. C 71.80, H 8.03, N 3.49; found C 71.69, H 8.21, N 3.25.

(Me₃Si)₂NB(3-C₉H₇)₂ (3b): Compound 3b was quantitatively obtained by a) refluxing a solution of 3a (2.00 g, 4.98 mmol) in 50 mL benzene for 3 h, or by b) treatment of 3a (1.50 g, 3.74 mmol) with a catalytic amount of NEt₃ (0.1 mL) in 40 mL benzene for 2 h at ambient temperature. Suitable single crystals of 3b were obtained by recrystallisation from hexane at -30°C. - ¹H NMR (C₆D₆): $\delta = 0.23$ (s, 18 H, SiMe₃), 3.22 (m, 4 H, CH_{2ind}), 6.70–7.29 (m, 10 H, CH_{ind}) - ¹¹B NMR: $\delta = 50.6$ (s). - ¹³C NMR: $\delta = 4.66$

(SiMe₃), 40.18 (CH_{2ind}), 122.97, 123.78, 124.74, 126.42, 128.29, 142.70, 144.29 (C_{ind}).

 $[\{Me_2NB(\eta^5-C_5H_4)_2\}ZrCl_2]$ (4a): Na[C₅H₅] (1.69 g, 19.20 mmol) was suspended in 40 mL hexane and a solution of Me₂NBBr₂ (2.05 g, 9.55 mmol) in 10 mL hexane was added dropwise at 0°C. After warming to ambient temperature, the yellow suspension was stirred for 2 h. NaBr was removed by filtration, and the residue was washed with 15 mL of diethyl ether. The filtrate was cooled to 0°C and 13.00 mL (20.80 mmol) of 1.6 м BuLi in hexane was slowly added . A white precipitate was formed immediately, the suspension was allowed to come to ambient temperature and stirred for 16 h. The yellow suspension was cooled to -70°C and [ZrCl₄(thf)₂] (3.62 g, 9.60 mmol) and 15 mL of diethyl ether was added. After warming to ambient temperature and stirring for an additional 2 h, the yellow suspension was filtered. The filtrate was stored overnight at -30 °C to yield **4a** as a yellow, crystalline solid (3.02 g, 91%). – ¹H NMR ([D₈]toluene): $\delta = 2.49 \text{ (s, 6 H, NMe₂)}$, 5.28 (m, 4 H, C_5H_4), 6.62 (m, 4 H, C_5H_4). $- {}^{11}B$ NMR: $\delta = 38.7$ (s). $- {}^{13}\text{C NMR}$: $\delta = 39.43 \text{ (NMe}_2)$, 111.58, 125.69 (C₅H₄), 137.52 (C_{ipso}) . - MS; m/z (%): 345 (60) [M⁺], 330 (5) [M⁺ - Me], 301 (20) $[M^+ - NMe_2]$. $- C_{12}H_{14}BCl_2NZr$ (345.19): calcd. C 41.75, H 4.09, N 4.06; found C 41.45, H 3.80, N 3.87.

[{(Me₃Si)₂NB(η⁵-C₅H₄)₂}ZrCl₂] (4b): As described for 4a Na[C₅H₅] (1.94 g, 22.00 mmol) was treated with (Me₃Si)₂NBCl₂ (2.66 g, 11.00 mmol) and subsequently with 1.6 m BuLi (13.75 mL, 22.00 mmol) and [ZrCl₄(thf)₂] (4.15 g, 11.00 mmol). Compound 4b was obtained as a yellow crystalline material (4.87 g, 96%). $^{-1}$ H NMR (C₆D₆): δ = 0.11 (s, 18 H, SiMe₃), 5.16 (m, 4 H, C₅H₄), 6.61 (m, 4 H, C₅H₄). $^{-11}$ B NMR: δ = 47.4 (s). $^{-13}$ C NMR: δ = 5.05 (SiMe₃), 109.63, 124.95 (C₅H₄). $^{-}$ MS; m/z (%): 461 (100) [M⁺], 446 (50) [M⁺ $^{-}$ Me], 315 (45) [M⁺ $^{-}$ 2(SiMe₃)₂]. $^{-}$ C₁₆H₂₆BCl₂NSi₂Zr (461.50): calcd. C 41.64, H 5.68, N 3.04; found C 41.50, H 5.80, N 3.09.

[{(Me₃Si)₂NB(η⁵-C₅H₄)₂}HfCl₂] (5): As described for 4a Na[C₅H₅] (1.96 g, 22.23 mmol) was treated with (Me₃Si)₂NBCl₂ (2.69 g, 11.10 mmol) and subsequently with 1.6 M BuLi (13.94 mL, 22.30 mmol) and HfCl₄ (3.56 g, 11.10 mmol). Compound 5 was obtained as a yellow crystalline material (5.18 g, 85%). – ¹H NMR (CD₂Cl₂): δ = 0.30 (s, 18 H, SiMe₃), 5.54 (m, 4 H, C₅H₄), 6.68 (m, 4 H, C₅H₄). – ¹¹B NMR: δ = 46.7 (s). – ¹³C NMR: δ = 4.91 (SiMe₃), 108.38, 123.96 (C₅H₄), 140.09 (C_{ipso}). – MS; *mlz* (%): 549 (35) [M⁺], 534 (50) [M⁺ – Me], 441 (20) [M⁺ – SiMe₃ – Cl]. – C₁₆H₂₆BCl₂HfNSi₂ (548.77): calcd. C 35.02, H 4.78, N 2.55; found C 34.78, H 4.81, N 2.45.

[{(Me₃Si)₂NB(η⁵-C₉H₆)₂}TiCl₂] (6): Li[C₉H₇] (3.48 g, 28.50 mmol) was suspended in 40 mL hexane and a solution of (Me₃Si)₂NBCl₂ (3.44 g, 14.20 mmol) in 20 mL hexane was added dropwise at 0°C. After warming to ambient temperature, the yellow suspension was

stirred for 2 h. LiCl was removed by filtration and the residue washed with 15 mL of diethyl ether. The filtrate was cooled to 0°C and 17.81 mL (28.50 mmol) 1.6 M BuLi in hexane was slowly added. A white precipitate was formed immediately, the suspension was allowed to come to ambient temperature and stirred for 16 h. The orange suspension was cooled to −100°C and [TiCl₃(thf)₃] (5.26 g, 14.20 mmol) was added. Whilst warming to ambient temperature the colour changed to dark violet. The suspension was stirred for 2 h and then treated with PbCl₂ (1.97 g, 7.10 mmol). After stirring for 16 h, all volatiles were removed in high vacuum, the remaining solid was extracted with 40 mL of CH₂Cl₂, and filtered. The filtrate was stored overnight at -30 °C to yield 6 as a dark violet, crystalline solid (5.23 g, 71%). – ¹H NMR (CD₂Cl₂): $\delta = 0.29$ (s, 18 H, SiMe₃), 6.84-7.52 (m, 12 H, CH_{ind}). - ¹¹B NMR: $\delta = 48.6$ (s). $- {}^{13}$ C NMR: $\delta = 4.81$ (SiMe₃), 115.83, 123.52, 124.82, 126.40, 127.62, 129.51 (CH_{ind}). - MS; m/z (%): 518 (10) $[M^+]$, 503 (25) $[M^+ - Me]$, 468 (50) $[M^+ - Me - Cl]$. -C₂₄H₃₀BCl₂NSi₂Ti (518.30): calcd. C 55.62, H 5.83, N 2.70; found C 55.31, H 5.76, N 2.58.

[{(Me₃Si)₂NB(η⁵-C₉H₆)₂}ZrCl₂] (7): As described for 4a Li[C₉H₇] (2.76 g, 22.60 mmol) was treated with (Me₃Si)₂NBCl₂ (2.74 g, 11.30 mmol) and subsequently with 1.6 M BuLi (14.13 mL, 22.60 mmol) and [ZrCl₄(thf)₂] (4.26 g, 11.30 mmol). Compound 7 was obtained as an orange crystalline material (5.20 g, 82%). $^{-1}$ H NMR (CD₂Cl₂): δ = 0.37 (s, 18 H, SiMe₃), 6.71–7.53 (m, 12 H, CH_{ind}). $^{-11}$ B NMR: δ = 48.5 (s). $^{-13}$ C NMR: δ = 5.18 (SiMe₃), 112.81, 113.32, 123.90, 125.94, 126.80, 127.54 (CH_{ind}). $^{-}$ MS; $^{-}$ m/z (%): 561 (35) [M⁺], 546 (5) [M⁺ $^{-}$ Me], 399 (40) [M⁺ $^{-}$ Zr $^{-}$ 2Cl], 285 (100) [M⁺ $^{-}$ Zr $^{-}$ C₉H₆ $^{-}$ 2Cl]. C₂₄H₃₀BCl₂NSi₂Zr (561.62): calcd. C 51.33, H 5.38, N 2.49; found C 51.02, H 5.45, N 2.28.

 $[\{iPr_2NB(\eta^5-C_5H_4)(\eta^5-C_9H_6)\}ZrCl_2]$ (8): Na[C₅H₅] (1.51 g, 17.20 mmol) was suspended in 40 mL hexane and a solution of iPr₂NBCl₂ (3.13 g, 17.20 mmol) in 5 mL hexane was added dropwise at 0°C. After warming to ambient temperature, the suspension was stirred for 2 h. NaCl was removed by filtration, the residue was washed with 5 mL hexane and the filtrate added dropwise to a suspension of Li[C₉H₇] (2.10 g, 17.20 mmol) in 20 mL hexane at 0°C. After stirring for 4 h at ambient temperature the LiCl was removed by filtration, washed with 5 mL hexane, and 10 mL of diethyl ether was added to the filtrate. The filtrate was cooled to 0°C and 21.50 mL (34.40 mmol) 1.6 м BuLi in hexane was added slowly. A white precipitate was formed immediately, the suspension was allowed to come to ambient temperature and stirred for 16 h. The suspension was cooled to −70°C and [ZrCl₄(thf)₂] (6.49 g, 17.20 mmol) was added. After warming to ambient temperature and stirring for an additional 4 h, the orange suspension was filtered, evaporated to dryness, and the remaining solid was extracted with 30 mL CH₂Cl₂. After filtration compound 8 was obtained as an orange crystalline solid at -30 °C (6.37 g, 82%). - ¹H NMR (CD_2Cl_2) : $\delta = 1.18$ (d, 6 H, Me), 1.39 (d, 6 H, Me), 3.50 (m, 1 H, CHMe₂), 4.08 (m, 1 H, CHMe₂), 6.21 (m, 1 H, CH_{ind}), 6.53 (m, 1 H, CH_{ind}), 6.46, 6.71 (2m, 4 H, C₅H₄), 7.28 (m, 2 H, CH_{ind}), 7.60 (m, 2 H, CH_{ind}). $- {}^{11}B$ NMR: $\delta = 40.0$ (s). $- {}^{13}C$ NMR: $\delta =$ 23.42, 26.16 (Me), 40.07, 44.34 (CHMe₂), 116.23, 122.09, 122.96, 125.10 (C₅H₄), 126.19, 126.74, 127.65, 127.90, 133.61, 134.28 (CH_{ind}) . - MS; m/z (%): 451 (5) [M⁺], 436 (20) [M⁺ - Me], 115 $(100) [C_9H_6^+]$. - $C_{20}H_{24}BCl_2NZr$ (451.36): calcd. C 53.22, H 5.36, N 3.10; found C 52.97, H 5.44, N 2.91.

[$iPr_2NB(η^5-C_5H_4)(η^5-C_9H_6)$ }HfCl₂] (9): As described for 8 Na[C₅H₅] (0.30 g, 3.41 mmol) and Li[C₉H₇] (0.42 g, 3.41 mmol) were treated with iPr_2NBCl_2 (0.62 g, 3.41 mmol) and subsequently 1.6 m BuLi with (4.26 mL, 6.82 mmol) in hexane and HfCl₄ (1.09 g,

3.41 mmol). Compound **9** was obtained as an orange, crystalline solid (1.36 g, 74%). - ^{1}H NMR (CD₂Cl₂): δ = 1.18 (d, 6 H, Me), 1.40 (d, 6 H, Me), 3.51 (m, 1 H, CHMe₂), 4.06 (m, 1 H, CHMe₂), 6.05, (m, 2 H, C₅H₄) 6.36 (m, 1 H, CH_{ind}), 6.48 (m, 2 H, C₅H₄), 6.55 (m, 1 H, CH_{ind}), 7.28 (m, 2 H, CH_{ind}), 7.61 (m, 2 H, CH_{ind}). - ^{11}B NMR: δ = 39.6 (s). - ^{13}C NMR: δ = 22.40, 25.56 (Me), 39.47, 46.34 (CHMe₂), 117.63, 121.19, 121.86, 124.00 (C₅H₄), 124.89, 125.64, 126.40, 126.60, 132.21, 134.18 (CH_{ind}). - MS; m/z (%): 539 (15) [M⁺], 524 (40) [M⁺ - Me], 504 (25) [M⁺ - Cl], 115 (100) [C₉H₆⁺]. - C₂₀H₂₄BCl₂HfN (538.63): calcd. C 44.60, H 4.49, N 2.60; found C 43.95, H 4.44, N 2.31.

X-ray Structure Determination of 3b: C₂₄H₃₂BNSi₂; formula mass $401.51 \text{ g} \cdot \text{mol}^{-1}$, monoclinic spacegroup C2/c (No. 15); a =33.283(6), b = 7.069(2), c = 23.734(5) Å, $\beta = 120.08(3)^{\circ}$, V =4832(5) Å³, Z = 8, $\rho_{calcd} = 1.10 \text{ g} \cdot \text{cm}^{-3}$, $\mu L_{in} = 1.38 \text{ mm}^{-1}$. EN-RAF-Nonius CAD4 diffractometer; CuK_{α} -radiation ($\lambda = 1.54184$ A); graphite monochromator. Data collection at 293 K on a colourless crystal of about $0.44 \times 0.22 \times 0.16$ mm³ using ω scans in the diffraction range $3 < 2\Theta < 65^{\circ}$ yielded 8368 reflections. The data were corrected for Lorentz and polarization effects, and a numerical absorption correction by Gaussian integration^[19] (min. trans. 0.669, max. trans. 0.817) was applied. After merging symmetryequivalent data 4159 unique reflections remained for structure solution by direct methods^[20] and subsequent Fourier difference syntheses. Least-squares refinement on structure factors^[21] was performed with anisotropic displacement parameters for all nonhydrogen atoms and hydrogen atoms in calculated positions $\{C-H = 0.98 \text{ Å}, U_{iso}(H) = 1.3 U_{eq}(C)\}$. Convergence was obtained for 253 variables, 2382 unique observations with $I > 1.0 \sigma(I)$ and R = 0.064, $R_{\rm w} = 0.069$, GOF = 1.145. A final difference Fourier map showed fluctuations of less than 0.65 eÅ^{-3} .

X-ray Structure Determination of 4a: C₁₂H₁₄BCl₂NZr; formula mass 345.19 g·mol⁻¹, monoclinic spacegroup $P2_1/n$ (No. 14); a =11.532(3), b = 10.099(4), c = 12.179(4) Å, $\beta = 104.70(2)^{\circ}$, V = 10.099(4)1372(1) A³, Z = 4, $\rho_{\text{calcd}} = 1.67 \text{ g} \cdot \text{cm}^{-3}$, $\mu L_{\text{in}} = 2.67 \text{ mm}^{-1}$. EN-RAF-Nonius CAD4 diffractometer; AgK_{α}-radiation ($\lambda = 0.56087$ Å); graphite monochromator. Data collection at 293 K on a colourless rod of about $0.40 \times 0.20 \times 0.15 \text{ mm}^3 \text{ using } \omega - 2\Theta \text{ scans in}$ the diffraction range $1 < \Theta < 24^{\circ}$ resulted in 9114 reflections. The data were corrected for Lorentz and polarization effects. After merging symmetry-equivalent data 4368 unique reflections remained for structure solution by direct methods; [20] the structure model was completed by Fourier difference syntheses. Leastsquares refinement on structure factors^[21] was performed with anisotropic displacement parameters for all non-hydrogen atoms and hydrogen atoms in calculated positions $\{C-H = 0.98 \text{ Å}, U_{iso}(H) = 0.98 \text{ Å}\}$ 1.3 U_{eq}(C)}. Convergence was obtained for 168 variables, 3408 observed data with $I > 1.0 \sigma(I)$ and R = 0.041, $R_w = 0.039$, GOF = 0.964. A final difference Fourier map showed fluctuations of less than 0.96 eÅ^{-3} .

Crystallographic data (excluding structure factors) for the structures) reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-127944 (3b) and CCDC-127945 (4a). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie and BASF AG, Ludwigshafen for support.

FULL PAPER

- [1] [1a] H. Braunschweig, R. Dirk, M. Müller, P. Nguyen, D. P. Gates, I. Manners, Angew. Chem. 1997, 109, 2433–2435, Angew. Chem. Int. Ed. Engl. 1997, 36, 2338–2340. — [1b] H. Braunschweig, R. Dirk, U. Englert, A. Berenbaum, F. Jäkle, A. J. Lough, I. Manners, J. Am. Chem. Soc. 1999, submitted.
- J. Lough, I. Manners, *J. Am. Chem. Soc.* 1977, Submitted.

 [2] [2a] H. Braunschweig, C. von Koblinski, R. Wang, *Eur. J. Inorg. Chem.* 1999, 69–73. [2b] H. Braunschweig, C. von Koblinski, M. O. Kristen, Patentschrift, O.Z.0050/49643, 1998, submitted.
- W. Kaminski, J. Chem. Soc., Dalton Trans. 1998, 1413-1418, and references herein.
- J. A. Klang, D. B. Collum, Organometallics 1988, 7, 1532-1537.
 D. S. Stelck, P. J. Shapiro, N. Basickes, Organometallics 1997,
- 16, 4546-4550.
- [6] [6a] A. J. Ashe, III, X. Fang, J. W. Kampf, Organometallics 1999,
 18, 2288-2290. [6b] M. T. Reetz, M. Willuhn, C. Psiorz, R. Goddard, Chem. Commun. 1999, 1105-1106.
- Goddard, Chem. Commun. 1999, 1105—1106.

 [7] [7a] I. D. Gridnev, A. Meller, Main Group Metal Chemistry 1998, 21, 271–277. [7b] E. Barday, B. Frange, B. Hanquet, G. E. Herberich, J. Organomet. Chem. 1999, 169, 225–232.

 [8] J. Knizek, I. Krossing, H. Nöth, W. Ponikwar, Eur. J. Inorg. Chem. 1998, 505–509.

 [9] [9a] H. Braunschweig C. Kollann, U. Englert, Eur. J. Inorg.
- Chem. 1998, 303–309.

 [9] [9a] H. Braunschweig, C. Kollann, U. Englert, Eur. J. Inorg. Chem. 1998, 465–468. [9b] H. Braunschweig, C. Kollann, K. W. Klinkhammer, Eur. J. Inorg. Chem. 1999, in press.
- [10] J. Okuda, T. Eberle, T. P. Spaniol, Chem. Ber. 1997, 130, 209 - 215.

- [11] R. L. Halterman, Chem. Rev. 1992, 92, 965-994.
- [12] E. Samuel, M. D. Rausch, J. Am. Chem. Soc. 1973, 95,
- 6263–6269. [13] [13a] F. A. Bovey, in: $NMR-Basic\ Principles\ and\ Progress,\ Vol.$ 4 (Eds.: P. Diehl, E. Fluck, R. Kosfeld), Springer-Verlag Berlin, 1971. – [13b] H. H. Brintzinger, D. Fischer, R. Mühlhaupt, B. Rieger, R. Waymouth, *Angew. Chem.* **1995**, 1255–1283, *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 1143–1169.
- [14] P. Geymayer, E. G. Rochow, U. Wannegat, *Angew. Chem.* **1964**, 76, 499–500, *Angew. Chem. Int. Ed. Engl.* **1964**, 3, 633.
 [15] W. Gerrard, H. R. Hudson, E. F. Mooney, *J. Chem. Soc.*
- 1960, 5168.
- [16] K. Ziegler, H. Froitzheim-Kühlhorn, K. Hafner, Chem Ber. **1956**, 89, 434.
- 1930, 69, 434.

 117] L. E. Manzer, *Inorg. Synth.* 1982, 21, 135–136.

 [18] A. J. Banister, N. N. Greenwood, B. P. Straughan, J. Walker, *J. Chem. Soc.* 1964, 995–1000.
- [19] P. Coppens, L. Leiserowitz, D. Rabinovich, *Acta Crystallogr.* 1965, 18, 1035–1038.
 [20] G. M. Sheldrick, "SHELXS86, Program for Structure Solution." University of Cartingon, Cormony, 1086
- tion", University of Göttingen, Germany, 1986.
- [21] ENRAF-Nonius, "SDP Version 5.0", Delft, The Netherlands, 1989.

Received July 1, 1999 [199236]